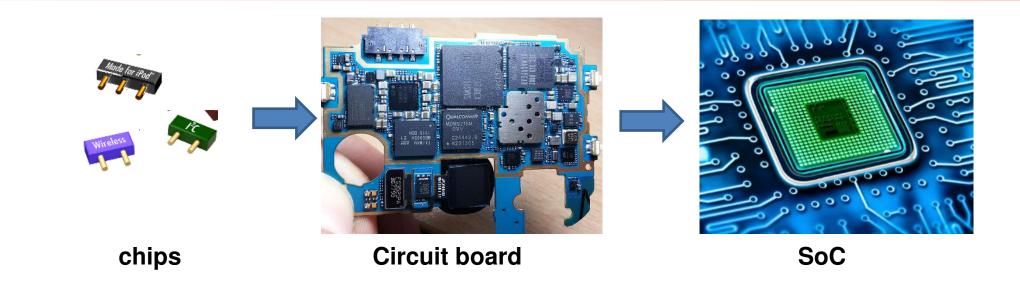
SoC Design Verification and Validation Challenges

U N Vasudev-Director Product Management and International sales



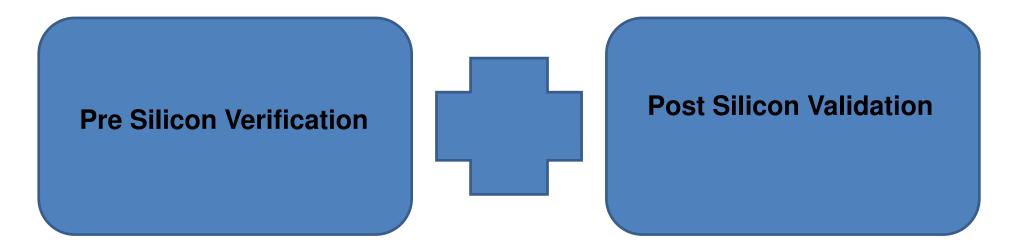
- Overview of SoC
- Design Challenges
- Customer needs
- Solution

Introduction to SoC

SoC is a Complex IC which has all major functions within a Chip or Chip set

- Programmable Processor
- On Chip Memory
- Analog Components
- Micro electronic opto & mechanical system
- Hardware and software

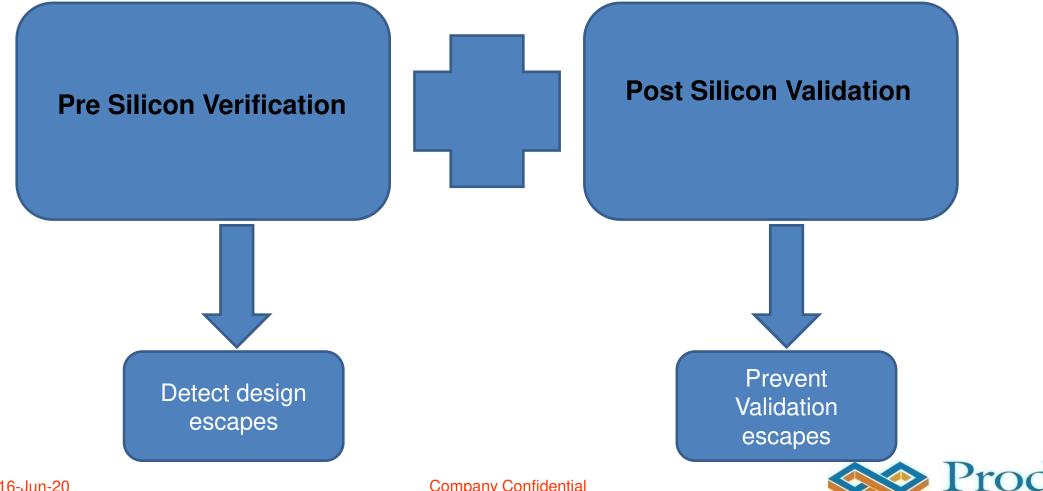
SOC	opto IC + digital IC + RF IC + RAM
complete system	
on one chip	



Integration of more functions.

- Reduced Product Design Cycles
- Compressed verification and Validation Cycles.
- Time to market pressures
- Increasing device complexity (typically 30+ million logic gate)

SoC Challenges and Needs


Ensures functional and Operational Quality of final product.

A single problem in any one functionality of the SoC can lead to re-spin leading to cost escalation and delays which may cost the market acceptance.

SoC Challenges and Needs

16-Jun-20 6

SoC Design and Verification Challenges

Functional errors which go un-noticed during design cycle:

- Incorrect functional requirements
- Wrong assumptions during design
- Defects in design.

Defects in Silicon which go un-noticed during validation cycle:

- Complex data path/flow
- Multiple conditions
- Time pressure

Thumb rule: If you don't test it will not work!!!

SoC Design and Verification failure points

Pre Silicon Functional Verification

Post Silicon Validation

Inter Operability

- Time consuming
- Urgency in Design to Silicon turn

- Test at Full performance
- Signal Integrity
- Issues with communicating with other peripherals
- Timing issues
- Implementation Differences
- Custom Implementation
- Compatibility issues with different sources

SoC Design and Verification KEY points

- Early verification.
- Time to market pressures balanced with right set of test plans.
- Edge case Coverage in test cases
 - Cycle to Cycle tests
 - Transaction driven tests
 - Full performance tests
- Expert Validation Engineer needed to take decisions which can avoid delays.
- Detailed design verification is a MUST.
- Open communication across teams.
- Ensure logical and algorithmic correctness of each design block.
- System Validation tests, Compatibility validation tests. C-M-V or "4 Corner" tests ,Signal Integrity Validation tests, Manufacturing Validation tests and Performance Validation - A MUST

SoC – System Validation

System Validation tests:

- Isolates approximately 75% of defects.
- Typically is a specially designed validation board with probe points for
 - 1. Logic Analysers
 - 2. Access to bus signals
 - 3. Variable clock and voltage regulators
 - 4. JTAG debugging port.
 - 5. I/O ports
- Functional test ensures RTL logic accuracy.
- Compatibility Validation tests ensures near real application scenario is tested.

Defects found in this cycle are easy to fix.

"C-M-V" or "4 corner" testing

C-M-V stands for Circuit marginality Validation test also known as 4 corner test.

- C M V design is tested for :
 - Voltage sensitiveness
 - Temperature sensitiveness
 - Frequency sensitiveness
- "4 corner test" tests a device at:
 - High Voltage
 - Low Voltage
 - High Temperature
 - Low Temperature

Analyses failure ay 1 or more corners

Signal Integrity Validation testing

Signal-integrity validation tests:

- Critical in SOC devices that operate at high clock frequencies.
- Tests tight margins as it checks
 - electrical signals
 - · Waveforms and
 - signal-integrity measurements as well as the quality of multiple interfaces.
- Identify problems with the electrical signals reaching their destination.
- Determine whether the signals have sufficient margins to interface with external chip sets, adapters, and other devices.
- Measures:
 - crosstalk
 - delay
 - glitch
 - Voltage drop, and
 - other electrical characteristics.

Manufacturing Validation testing

Manufacturing validation tests:

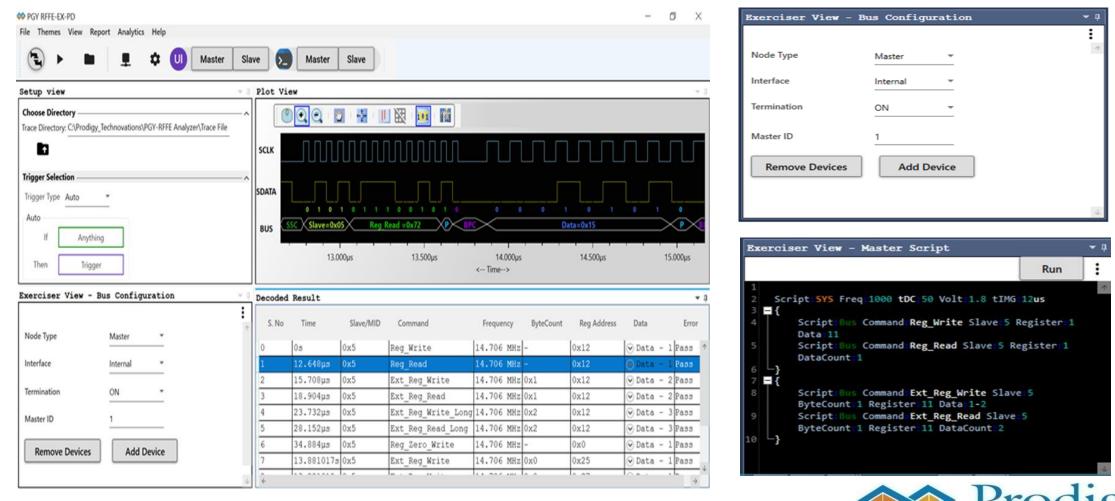
- Checks if we can manufacture a product in high volume without affecting yield.
- Tests if manufacturing-process variations do not impact product specifications and margins.
- Quality and reliability validation checks if the product has :
 - low infant-mortality rate and
 - low FIT (failure in time).

One can derive MTBF (mean time between failures) and FIT numbers from quality and reliability validation.

Performance Validation testing

Performance validation tests:

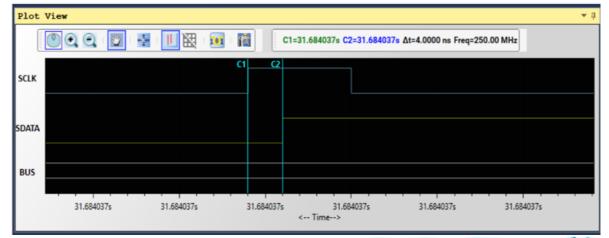
- Allows one to compares theoretical performance with the actual performance of the DUT.
- Benchmarking test suites checks the performance and generate metrics that provide the basis for any deviations between expected and observed results.
 - When testing reveals significant deviations, the design team can confirm the observations in simulations.
- May result in design-level changes that involve firmware or software workarounds or in a device re-spin.


- RTL simulation tools
- Oscilloscopes
- Logic Analyzers
- Protocol Analyzers with Emulation, margin test and error injection capabilities.

Capability of Test Solutions - 1

• Protocol Analyzers with Emulation, margin test and error injection capabilities.

Capability of Test Solutions - 2


- Protocol Analyzers with Emulation, margin test and error injection capabilities.
 - Variable frequency
 - Generates standard amplitude signals
 - 1.0V to 3.3V
 - Worst case signal 0.6V to 3.6V
- ► Timing
 - Ability to control Clk-Data delay
 - Ability to control duty cycle

API

- Scripting capability in Phyton/C++ to enable
 - C-M-V or 4 Corner tests
 - SI Validation tests
 - Margin tests



Capability of Test Solutions - 3

- Debug test tools
- Oscilloscopes
 - Specific Electrical and decode SW capabilities.
- Logic Analyser
 - State View
 - Timing View
- Protocol Analyser
 - Decode Bits stream
- API

18

- Scripting capability in Phyton/C++ to enable
 - C-M-V or 4 Corner tests
 - SI Validation tests
- Margin tests

Summary

- SOC design verification and Validation needs to be handled effectively to ensure:
 - Design issues are checked early
 - Silicon bugs are caught without fail.

Else re-spins will be costly and time consuming.

- Needs rigorous test environment to cover
 - C-M-V or 4 corner testing
 - SI validation testing
 - Manufacturing Validation testing
 - Performance Validation testing

Contact Prodigy Technovations for detailed solution information.

19 | 16-Jun-20

Prodigy Technovations Pvt. Ltd,

294, 3rd Floor, 7th Cross, 7th Main, BTM II Stage, Bangalore 560076 INDIA

Ph: +91-80-42126100/9880027949 <u>www.prodigytechno.com</u> <u>u.n.vasudev@prodigytechno.com</u> contact@prodigytechno.com

