ElectronicsForU Network : July Ed. of India Technology Week @Home 2020

Chips for GreenTech: What will Change?

Gaurav Gupta, Ph.D. 15-July-2020

https://www.linkedin.com/in/gaurav-gupta-1205399/ https://www.quora.com/profile/Gaurav-Gupta-1977

Outline

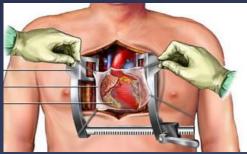
- Why and Why Now: Energy Crisis
- Traditional Approach: Scaling Nodes
 - New Approach:

Novel

- **Materials Transistors Circuits Architectures**
- Enabling New Applications
- Scope for India (Discussion)
- Testing (Discussion)
- Fab/Factory vs Outsource (Discussion)
- Volume (Local Market vs Global Market) (Discussion)

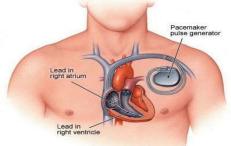
Why?

Energy Crisis



200 Trillion-Watt-hr. consumed in 2015 by Data Servers [1] !

Save Energy. Save Earth



No need to repeatedly operate to Replace Implants

Save Lives & Money (Bioelectronics)

Battery Drainage requires operation to replace implant

Explosion of devices & energy demand

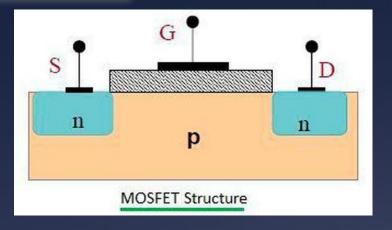
Clean & Smart Environment

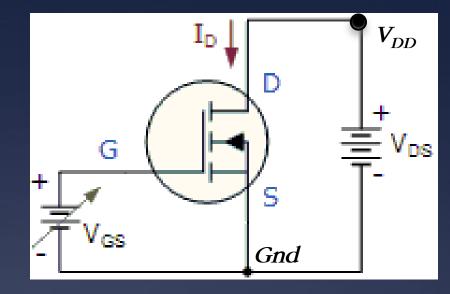
Objective

Traditional Computing Chips

Large Static + Dynamic Power Dissipation

But, this is going to be "Very Very" Application Specific

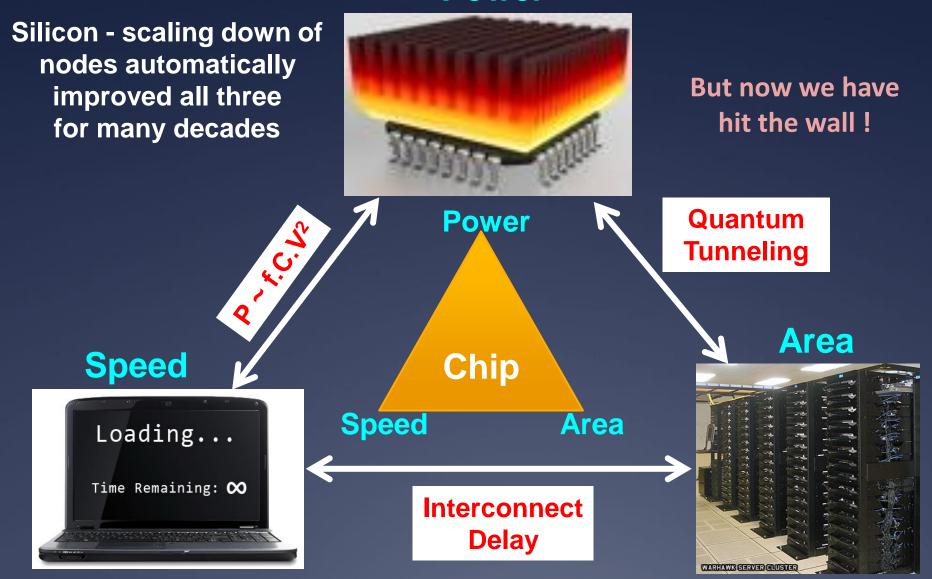

Future Computing Chips



- Robust Transport
- Minimum leakage of current & energy (as heat)
- Task accomplished by consuming smaller amount of energy
- Zero Standby Power with much smaller break-even time and power

Traditional Approach

Node Scaling

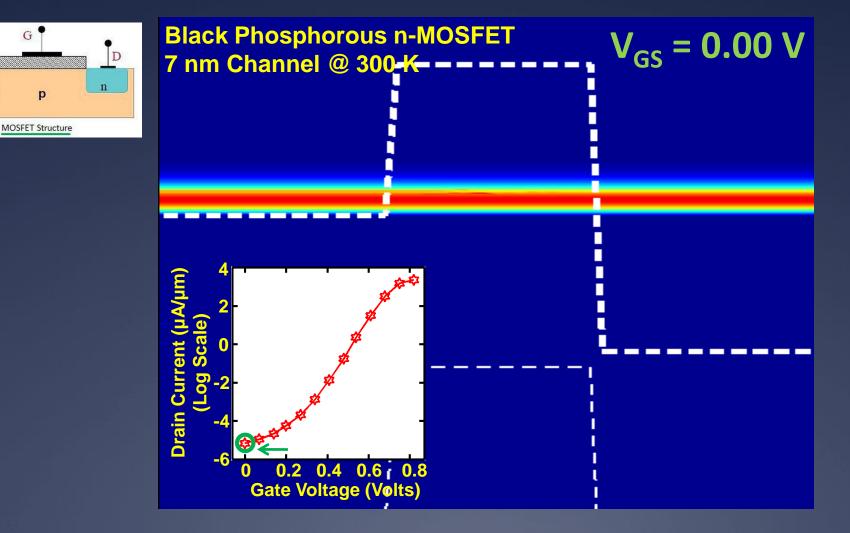


Scale:

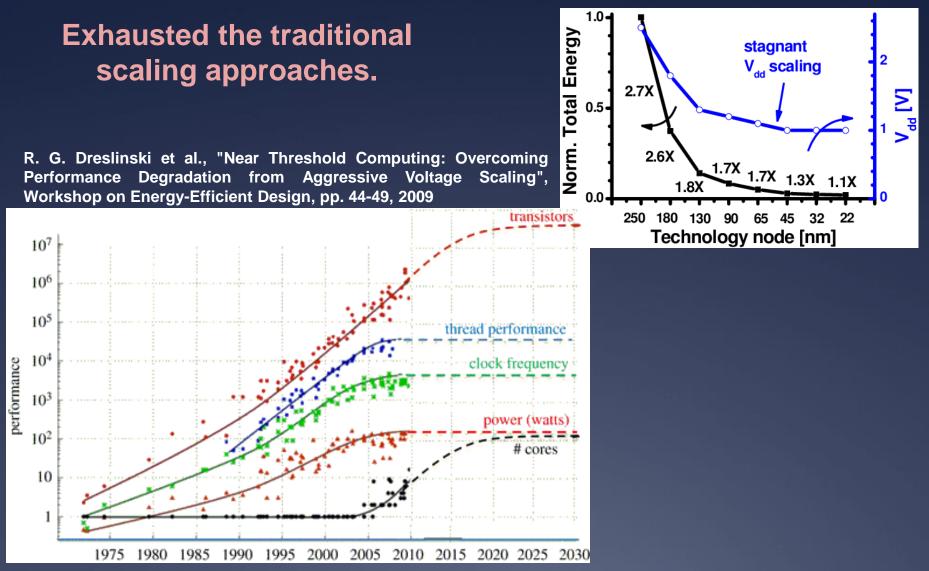
- ➢ Bias Voltage V_{DD}
- Dimensions Channel Length, Fins
- > High-K Gate Materials (HfO₂)
- Strained Transistors
- > Clock Frequency
- > Parallelism

Accomplish same task with lower energy/power consumption. i.e. femto-Joules consumed for toggling 1-bit

Standard Trilemma Power



Quantum Transport Simulation of 7 nm Black Phosphorus Transistor


Observe the leakage through the bandgap

S

n

End of evolution of GreenTech Chips?

John Shalf, "The future of computing beyond Moore's Law", Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 378, issue 2166, 2020

Can we continue improving the energy and power efficiency of Chips ?

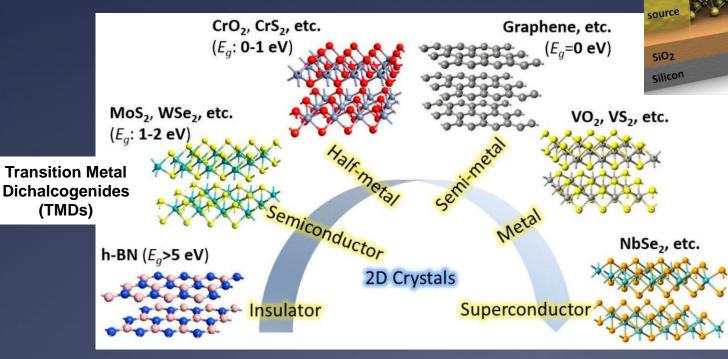
Of course **Yes**

Otherwise we won't be having this webinar

So let's see:

- > How
- > Where does it lead us (if time permits)
- What sort of future they can unfold (if time permits)

New Approach


Broad Classification

 Materials & their combinations Low Power Segment 2D Materials, Topological Insulators (TIs) High-Power Segment Wide-Bandgap Semiconductors 		 ctronics Transistors Tunneling Field Effect Transistors (TFETs) Van der Waals heterostructures based FETs Negative-Capacitance Field Effect Transistors (NC-FETs) Selectors 						
					Circuits			
						IC De	esign	Architectures

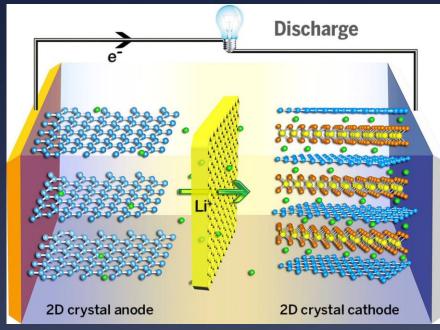
Materials

2D Materials

- Atoms in single layer
- Typically lesser scattering (absence of bonds in perpendicular direction):
 - Longer mean-free path
 - Higher mobility
- Robust electron transport

M. R. E. Tanjil et al., "Ångström-Scale, Atomically Thin 2D Materials for Corrosion Mitigation and Passivation", Coatings, 9(2), pp. 133, 2019 top gate

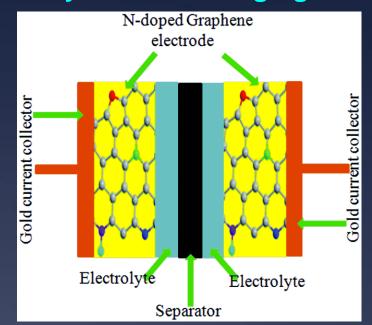
MoS₂

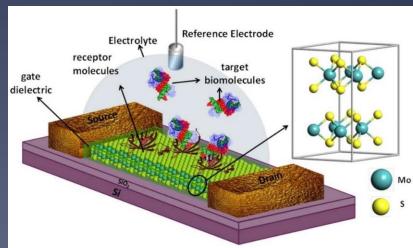

https://physicsworld

.com/a/molybdenite-

transistor-is-a-first/

2D Material Applications Computing

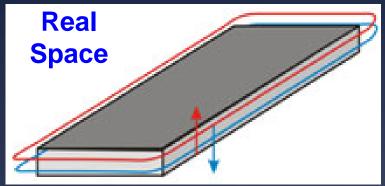

Future batteries with high energy density and fast charging



Top Left: F. Bonaccorso et al., "Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage", Science, Vol. 347, Issue 6217, pp. 1246501, 2015 ; Top Right: E. Haque et al., "Nitrogen doped graphene via thermal treatment of composite solid precursors as a high performance supercapacitor", RSC Adv., vol. 5, pp. 30679-30686, 2015

Bio-Sensors better SNR → lower resolution ADC → less energy consumption

K. Shavanova et al., "Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology", Sensors 16(2), 223, 2016



Topological Insulator (TI)

Nobel Prize 2016 Physics: topological phase transitions and topological phases of matter

https://www-ssrl.slac.stanford.edu/ research/highlights_archive/topological_insulator.html

2D-TI (QSH Phase) Spins flow on edges

Momentum Axis of electron spin Space Insulator LUSTRATION: EMILY COOPE

3D-TI – Spins flow on Surface

http://spectrum.ieee.org/image/1876231

Electron Transport in Topological Insulators

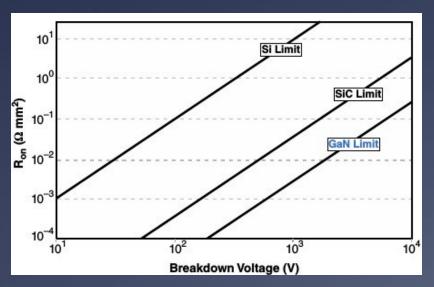
Back-scattering Prohibited

unless:

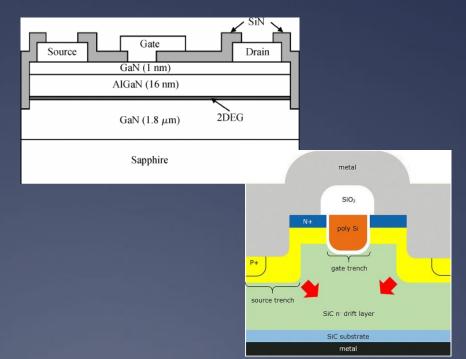
> Spin-Flip Mechanisms (Magnetic Impurities)

> Break Time-Reversal Symmetry (Magnetic-Field)

Excellent Material for Transport and Electronic Devices


Hypothesis :

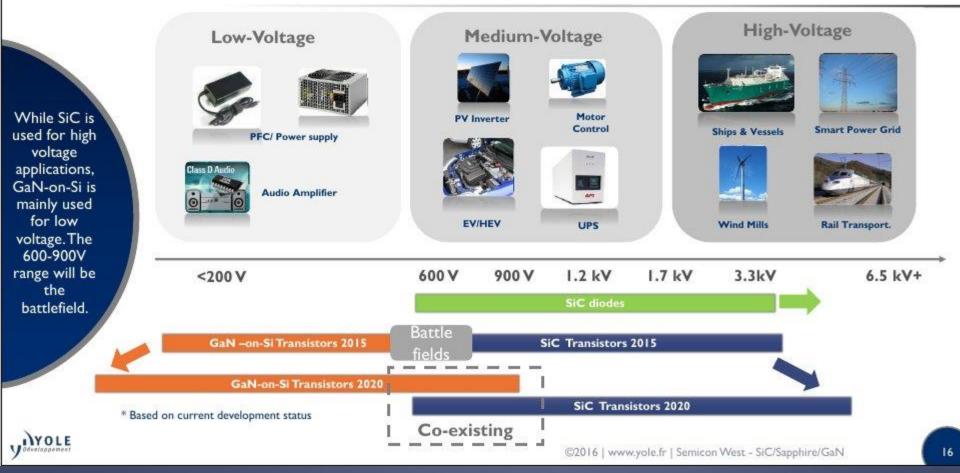
- Perfect Transport
- No Heat Dissipation in the Channel (proven for HgTe 2D-TI edge transport)


Wide-bandgap (WBG) Semiconductors

Gallium Nitride (GaN) and Silicon Carbide (SiC): Power Applications

Table 1.1 Material properties of Silicon, GaN, and SiC						
Parameter		Silicon	GaN	SiC		
Band Gap E _g	eV	1.12	3.39	3.26		
Critical Field E _{Crit}	MV/cm	0.23	3.3	2.2		
Electron Mobility µn	cm ² /V·s	1400	1500	950		
Permittivity ε _r		11.8	9	9.7		
Thermal Conductivity λ	W/cm·K	1.5	1.3	3.8		

Both Table and R_{on} plot: Chap 1. GaN Transistors for Efficient Power Conversion by Alex Lidow

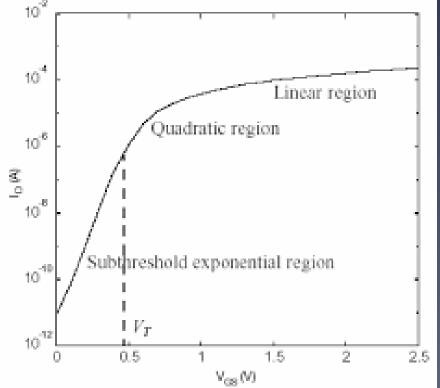


15

WBG Applications

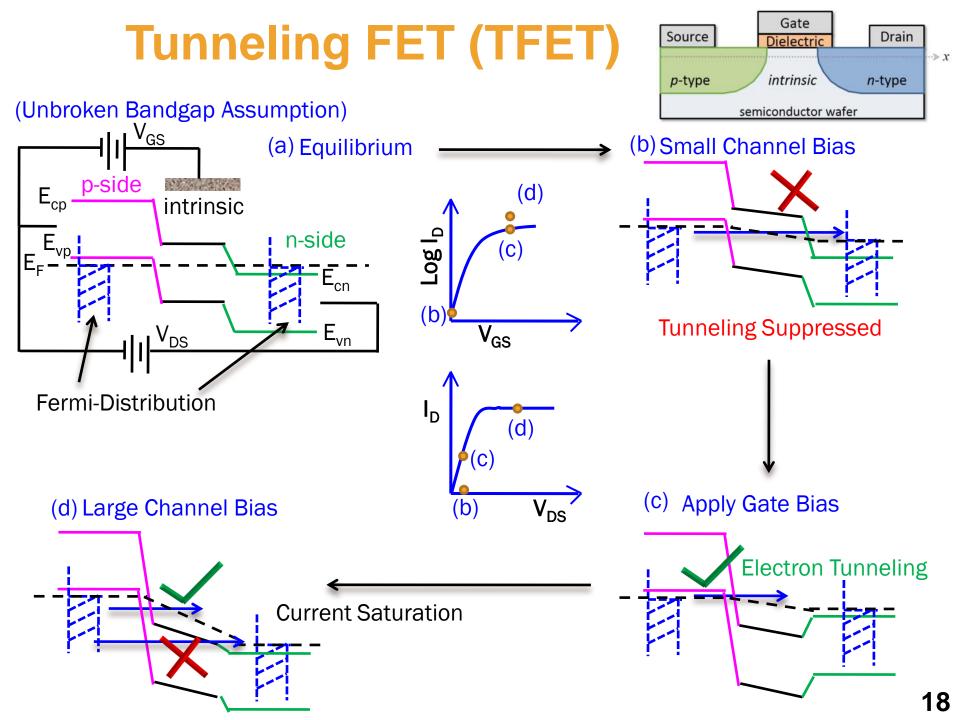
WBG MARKET SEGMENTATION AS A FUNCTION OF VOLTAGE RANGE

Current status and Yole's vision for 2020*

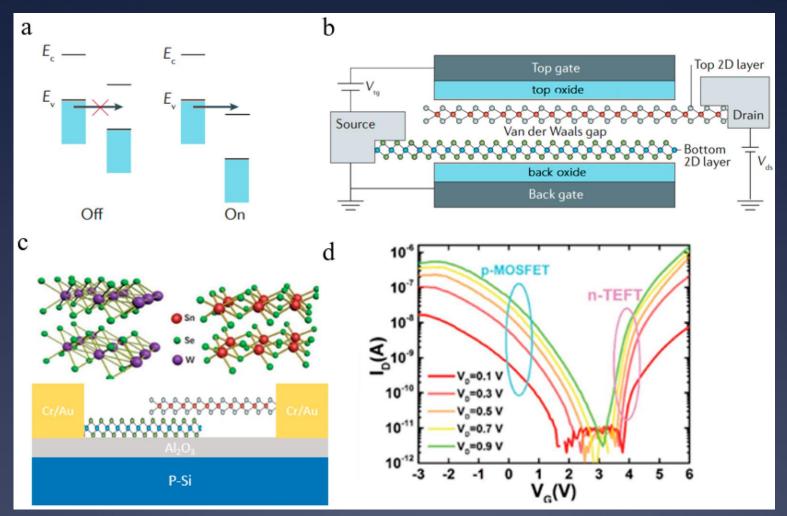

SiC, Sapphire, GaN... : what is the business evolution of the non-Silicon based semiconductor industry?, Yole Report, 2016

Transistors

Sub-Threshold Slope (SS)

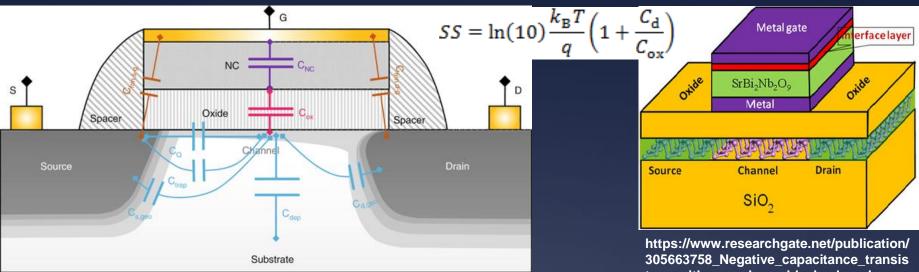

Within the available gate voltage swing, , low SS is required for:

- high "switch-on current" (I_{ON}) for faster charging of load capacitors
- low switch-off current (I_{OFF}) for lower static dissipation
- MOSFETs ideal case 60 mV/decade @ 300 K (limited by thermionic emission over the barrier)



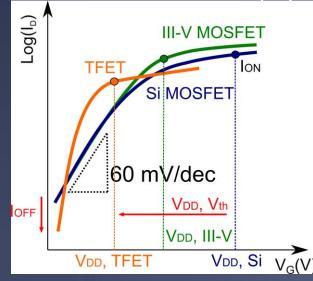
$$SS = \ln(10)\frac{k_{\rm B}T}{q} \left(1 + \frac{C_{\rm d}}{C_{\rm ox}}\right)$$

 k_B is Boltzmann's constant T is the temperature q the elementary charge C_d the depletion layer capacitance C_{ox} the gate-oxide capacitance.

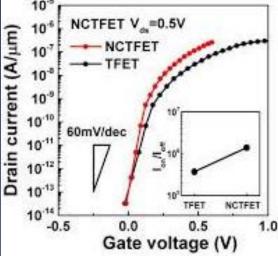

Van der Waals Heterostructure FETs

J. Li et al., "Van der Waals Heterostructure Based Field Effect Transistor Application", Crystals , 8(1), pp. 8, 2018

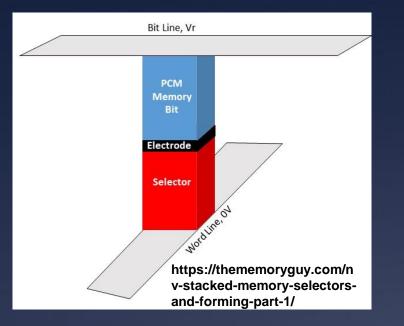
- Larger cross-section enables more current
- Robust transport in both atomic layers \rightarrow lower heat dissipation

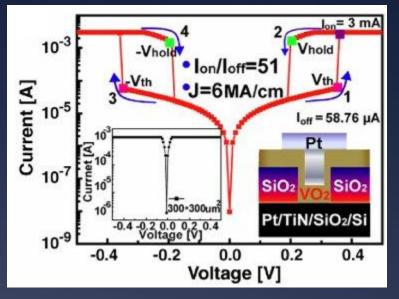

Negative Capacitance FET

https://www.nature.com/articles/s41928-020-0377-0


tors with monolayer black phosphorus

Negative Capacitance Gates: Ferroelectric Materials like $Pb[Zr_{x}Ti_{(1-x)}]O_{3}$ (PZT), $Hf_{0.5}Zr_{0.5}O_{2}$ (HfZrO), $SrTiO_{3}$ (STO)

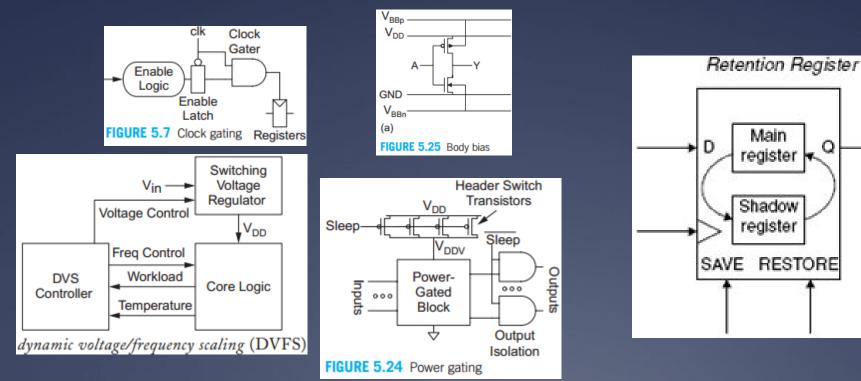

https://www.zurich.ibm.com/st/ nanophotonics/tunneling.html

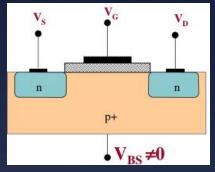

> https://e3s-center.berkeley.edu/wpcontent/uploads/2017/09/2-1-1 Kobayashi.pdf

20

Selectors

G. W. Burr et al., "Access devices for 3D crosspoint memory", Journal of Vacuum Science & Technology B 32, 040802 (2014)

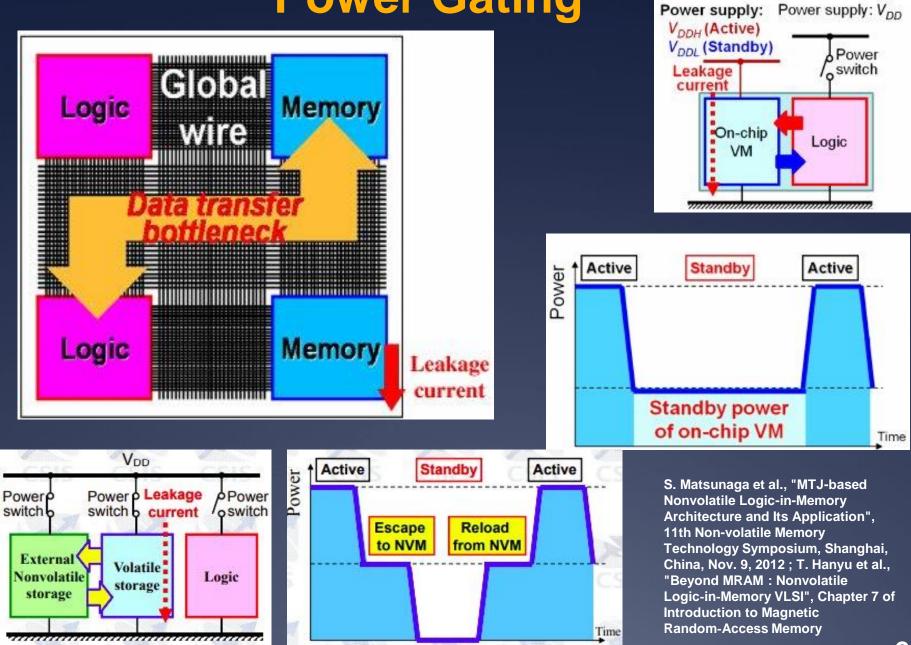

- Two-Terminal Device (multi-layer stack of materials) to replace MOSFET especially for 3D-Memories
- > On-Off like MOSFET
- On vs Off depends on direction of current flow through them
- MOSFET can only be grown as part of FEOL, but these can be part of BEOL


Circuits

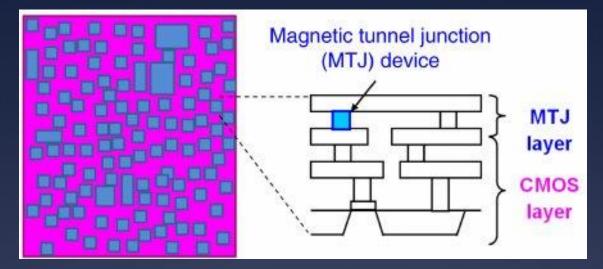
Chapter 5, CMOS VLSI Design – Weste, 4th edition

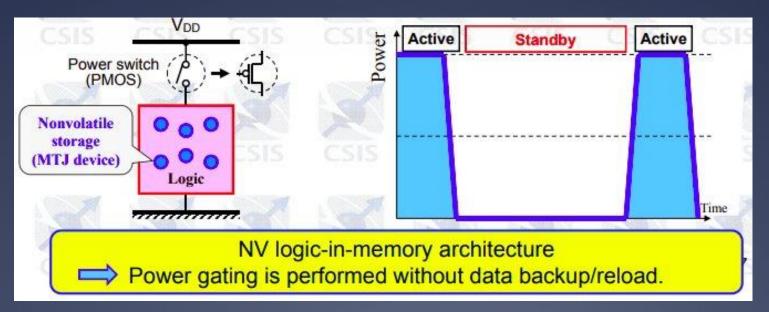
Low Power Schemes

- **Body Voltage & Multi-Threshold** 1.
- Reduce/Multi V_{DD} 2.
- 3. **Reduce/Multi Freq.**
- **Clock Gating** 4.
- 5. Store-in on-chip memory:- a. Volatile **b.** Non-Volatile
- **Retention Registers:-**6.
- **Complete Power-Off (Power-Gating)** 7.



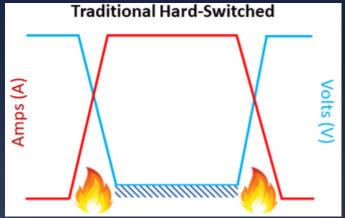
Q

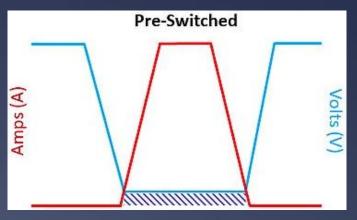

<u>a.</u> Volatile **b.** Non-Volatile


 $V_{T} = V_{FB} + 2\phi_{b} + \gamma_{N}\sqrt{\left(2\phi_{b} - V_{BS}\right)}$

Power Gating

Memory-in-Logic

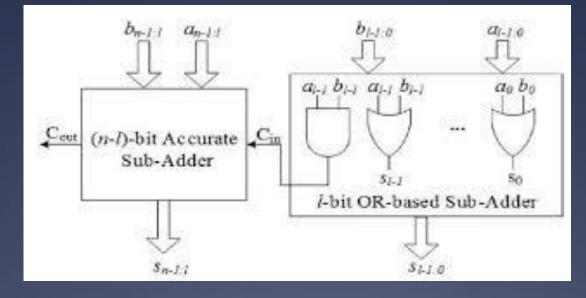




S. Matsunaga et al., "MTJ-based Nonvolatile Logic-in-Memory Architecture and Its Application", 11th Non-volatile Memory Technology Symposium, Shanghai, China, Nov. 9, 2012 ; T. Hanyu et al., "Beyond MRAM : Nonvolatile Logic-in-Memory VLSI", Chapter 7 of Introduction to Magnetic Random-Access Memory

Adiabatic Circuits

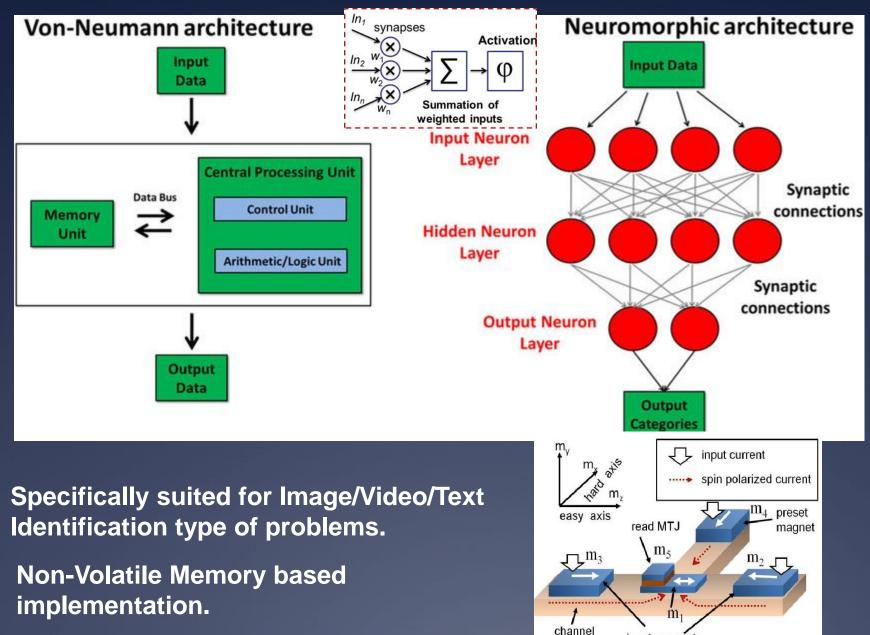
- 1. Never turn on a transistor when there is a voltage potential between the source and drain.
- 2. Never turn off a transistor when current is flowing through it.
- recovering or recycling energy in the form of electric charge → power supplies of adiabatic logic circuits have also used circuit elements capable of storing energy.
- 4. Concept (1) and (2) also used in SMPS (Switched Mode Power Supplies). WBG semiconductors make this process very efficient.


https://www.pre-switch.com/singlepost/2018/05/28/Hard-Switching-Soft-Switching-Pre-Switching

Architectures

Approximate Computing

- 1. Acceptably inaccurate result rather than a guaranteed accurate result.
- 2. Good for applications like Search engine, Machine Learning, Scientific Computing
- 3. Google using this approach in their Tensor Processing Units (TPUs)


Approx. Adder Circuit

https://www.irjet.net/ar chives/V5/i10/IRJET-V5I10365.pdf

- **1.** Approximate Circuit: reduced hardware. Save energy & area.
- 2. Approximate Storage: Truncate low bits while storing

Neuromorphic Computing

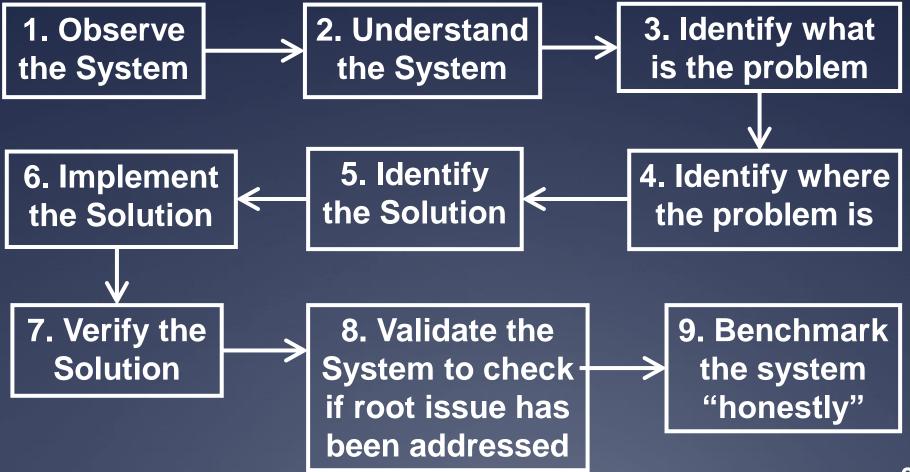
input magnets

Quantum Computing

https://www.nyt imes.com/2019/ 10/23/technolog y/quantumcomputinggoogle.html

- Very specific set of problems like Cryptography, Quantum Simulation for chemistry and drug discovery.
- NASA had bought annealing based Quantum Computer from D-Wave.

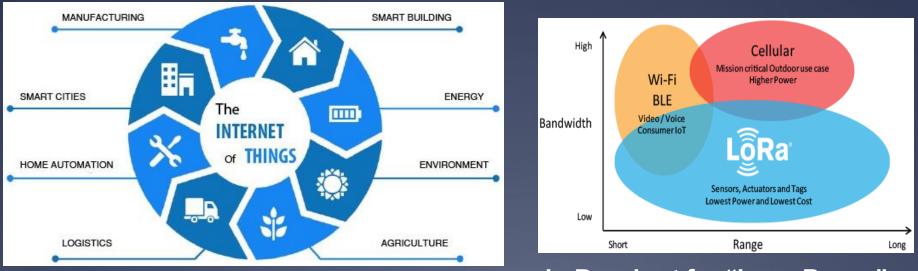
Summary


- We are at a cusp of massive change when new generation and type of GreenTech Chips shall enter our lives.
- GreenTech Chips shall see changes which range across materials, devices, circuits and architectures.
- As a designer of a chip or a system around it or an application over it, its suggested to go for first-principle thinking.
- These new solutions are very unlike previous ones and there is no concept of general or universal solution. They are not drop-down replacement of previous technology. So start by understanding the NEED, then SYSTEM, then SOLUTION, and finally do VERIFY and BENCHMARK it.

Back-Up

New Applications

Suggested Method


to check if one or more of "New Approach" will actually solve a problem with a GreenTech solution, or is it just going to be a fad or over-design.

Internet-of-Things (IoT)

Low Battery Drainage, Extreme Low-Power, Energy Harvesting & Bio-Sensing Applications

- Low-Power Wireless [LoRa, LPWAN, FM, BLE], [WiFi ?]
- Analog vs Digital Computing
- Data Analytics [How Frequently ? Edge Vs Cloud ?]
- Security [Really required ? H/w vs S/w Encryption ? Cost ?]

LoRa: short for "Long Range"

32

Wearables

Consumer Electronics (an unmet " Need " ?)



Specialized Applications (Wearable Elec. + e-Textiles)

Examples: Patients, healthcare worker, fire fighters, police/soldiers, mining workers, oil rig platform workers, construction workers, painters, Roofers, electricians, electrical power-line workers, fishers and related fishing workers, underwater welders, jewelry design

Heavy Drainage Battery Applications

Drones, Robots, Electric Vehicles, Nano-Satellites

- Understanding the "Need" (Technology, Market, Customers), e.g.:
 - "Coal-fired plants generate 72% of India's electricity" [13]
 - Norway's 95% electricity is hydropower [14]
 - Solving energy crisis and carbon foot-print

→ Case for EVs for India vs Norway ?

- This shall help decide upon the technology, e.g. for driving motor or charging battery, e.g.:
 - Power-MOSFET vs GaN HEMT
 - SiC FET vs IGBT
 - Switching Frequency & EMI (Electromagnetic Interference)
 - Thermal Constraints & Cooling requirements
 - System Size, Cost & Performance (True Bottleneck ?)

References (1/2)

[1] A. S. G. Andrae et al., "On Global Electricity Usage of Communication Technology: Trends to 2030", Challenges 6(1), pp. 117-157, 2015.

[2] Data Centre Image: https://gcn.com/articles/2013/03/13/-

/media/GIG/GCN/Redesign/Generic/datacenterheat.png

[3] Green-Earth-Leaf Image: http://www.viralsinhchauhan.in/wp-content/uploads/2019/07/Green-Planet.jpg

[4] Open Heart Surgery Image: Point 7: https://www.healthcarebusinesstech.com/the-10-most-expensivemedical-procedures/

[5] Pacemaker Image: https://www.h2hcardiaccenter.com/services/artificial-cardiac-pacemakerimplantation.php

[6] Pollution Image: https://www.theguardian.com/cities/2019/mar/05/india-home-to-22-of-worlds-30-most-polluted-cities-greenpeace-says

[7] IoT Chip Image: https://www.forbes.com/sites/Iouiscolumbus/2020/05/25/the-top-20-iot-startups-towatch-in-2020/#1a0897bf7697

[8] Electric Vehicle Image: https://thebluecircle.co/2020/04/16/5-electric-vehicle-startups-making-indiaclean-and-green/

[9] Chip with Heat Sink Image: https://lh3.googleusercontent.com/proxy/l8CTCdDd00IG6A0hSuFda5-ONvgy4TLwtv2nVzsvabV-kZIKORwNu5b-5VG64MA7mWxQ5NhNaMMN-

kDANBFPABWMTI0CRAmzefethmOXH_YVEFfZrgc_WI0o8OZXzZGh1g

[10] Laptop Terminal loading Image: https://media.techpp.com/wp-content/uploads/2013/08/slowcomputer.jpg

[11] Data Server Racks Image: https://www.engadget.com/2007-08-11-sonys-warhawk-server-farm-ismade-of-ps3s.html

[12] MOSFET Structure Image: https://www.power-and-beyond.com/mosfet-vs-bjt-whats-the-difference-a-909006/

[13] https://economictimes.indiatimes.com/industry/energy/power/india-will-not-be-able-to-achieve-itsrenewable-energy-targets-anytime-soon/articleshow/69286279.cms

[14] https://en.wikipedia.org/wiki/Renewable_energy_in_Norway#Hydroelectric_power

[15] Neuromorphic Summation Image: https://dfan.engineering.asu.edu/neuromorphic-computing/

References (2/2)

[16] Von-Neumann vs Neuromorphic Image:

https://www.researchgate.net/publication/329413704_Challenges_in_materials_and_devices_for_Resistive

-Switching-based_Neuromorphic_Computing

[17] Spintronic Synapse Image:

https://www.researchgate.net/publication/225297114_Ultra_Low_Energy_Analog_Image_Processing_Usin

g_Spin_Neurons

[18] IoT Image: https://softmedialab.com/blog/how-to-develop-an-iot-app/

[19] LoRa Image: https://www.semtech.com/lora

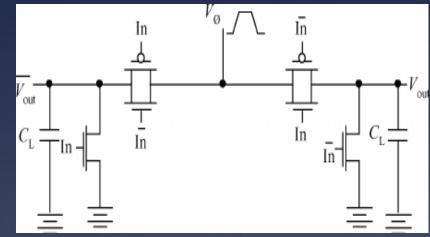
[20] Pebble Watch Image: https://www.amazon.com/Pebble-Technology-Corp-301BL-

Smartwatch/dp/B00BKEQBI0

[21]Sony's Personal Aircon Image: https://www.designboom.com/technology/sony-reon-pocket-wearableair-conditioner-07-26-2019/

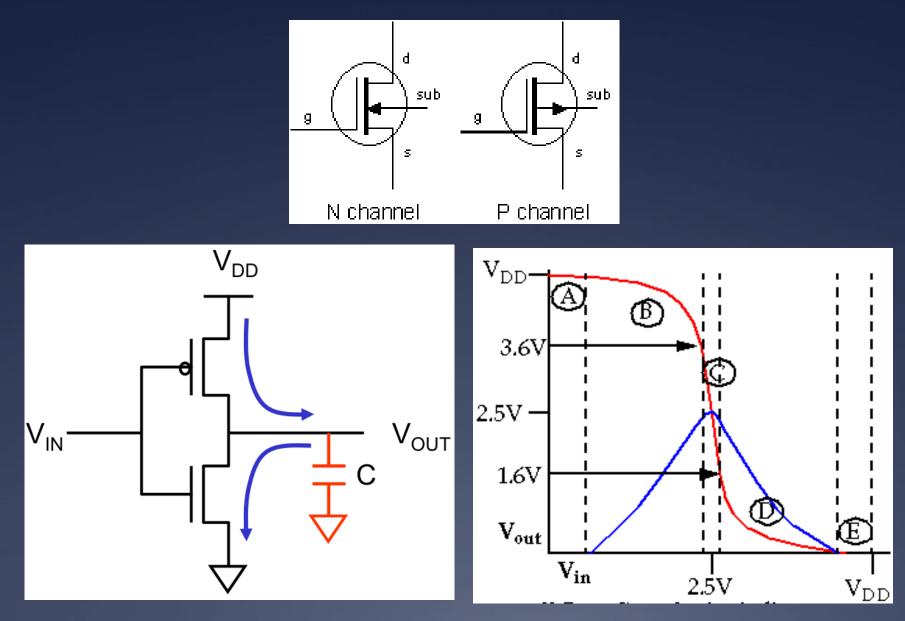
[22]Google Glass Image: https://www.theverge.com/2020/2/4/21121472/google-glass-2-enterprise-edition-for-sale-directly-online

[23] E-textile: Hand with circuit Image: https://www.youtube.com/watch?v=cMcQeID6b40


[24] GaN HEMT Image:

https://www.researchgate.net/publication/260295265_Breakdown_voltage_and_current_collapse_of_F-plasma_treated_AIGaNGaN_HEMTs

[25] TFET Image: https://www.wikiwand.com/en/Tunnel_field-effect_transistor


[26] Subthreshold Slope (SS) equation: https://www.zurich.ibm.com/st/nanophotonics/tunneling.html

Adiabatic Adder

https://www.researchgate.net/publication /258308944_Scaling_trends_in_energy_re covery_logic_An_analytical_approach

Analog, Logic & Memory

Chapter 5, CMOS VLSI Design – Weste, 4th edition

 $P_{\text{total}} = P_{\text{dynamic}} + P_{\text{static}}$

Other 14%

Memory

20%

Leakage 21% Cores

32%

I/O

13%

How is Power Dissipated ?

Power dissipation in CMOS circuits comes from two components:

- Dynamic dissipation due to $P_{\text{dynamic}} = P_{\text{switching}} + P_{\text{short circuit}}$
 - charging and discharging load capacitances as gates switch
 - "short-circuit" current while both pMOS and nMOS stacks are partially ON
- Static dissipation due to $P_{\text{static}} = (I_{\text{sub}} + I_{\text{gate}} + I_{\text{junct}} + I_{\text{contention}})V_{DD}$
 - subthreshold leakage through OFF transistors
 - gate leakage through gate dielectric
 - junction leakage from source/drain diffusions
 - o contention current in ratioed circuits (see Section 9.2.2) FIGURE 5.6 Power in Niagra2

Active Power \rightarrow power consumed while the chip is doing useful work

Standby Power \rightarrow power consumed while the chip is idle. If clocks are stopped and ratioed circuits are disabled, the standby power is set by leakage.

Sleep Mode \rightarrow supplies to unneeded circuits are turned off to eliminate leakage \rightarrow drastically reduces the sleep power required, but the chip requires time and energy to wake up \rightarrow sleeping is only viable if the chip will idle for long enough.³